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The mathematical basis of LCAO MO theory is studied, both within the Hartree-Fock approxi- 
mation and in more exact formulations. The basic LCAO expansion for molecular orbitals Iq~> in 
terms of atomic orbitals ]Z> is conveniently written 

I~> = Ix> s - '  B 
where S is the overlap matrix for atomic orbitals and B is the matrix of atomic orbital-molecular 
orbital overlaps. It is suggested that matrices P and Q, defined by 

P = B B  + 
and 

Q = B n B * ,  

where n is the matrix of molecular orbital occupation numbers, are appropriate to the interpretation 
of molecular calculations in terms of atomic orbital components, electronic populations and the 
degree of bonding. Implications for Hartree-Fock calculations are investigated. 
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1. Introduction 

The main objective of this paper is to present a reformulation of linear com- 
bination of atomic orbitals molecular orbital (LCAO MO) theory when the atomic 
orbitals concerned are not orthogonal (that is, they have non-zero overlap inte- 
grals). We explore particularly the meaning of the coefficients in the LCAO 
expansion and of the associated "charge-and-bond-order matrix". Our results 
have consequences for finding the coefficients, for interpreting molecular calcu- 
lations by means of the concepts of atoms in molecules and chemical bonds, and 
for defining quantities such as "atomic charge" and "bond order" suitable for 
correlation with experimental results. 

Using Dirac's ket-bra notation [1], the LCAO expansion in its usual form [2] 
may be written 

14'> = IX) C (1) 

where I~b) is a 1 x mMO row matrix of the mMo occupied molecular orbitals li), ~>, 
etc., and IZ> is a 1 x mAO row matrix of the atomic orbitals I#>, Iv>, etc., chosen 
for the expansion. C is consequently an mAO X rnMo rectangular matrix of coef- 
ficients of the expansion, and mAo > mMo. The molecular orbitals are usually 
required to be orthonormal, whereupon we obtain the standard condition on C: 

<q~l~> = CtSC= I, (2) 
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I being the unit matrix of order mMO and S the matrix of overlap integrals over 
atomic orbitals: 

S = <ZIZ>, (3) 
having elements S~ = </~[ v>. 

In general given a suitable set of atomic orbitals I*> one needs to determine C 
and the occupation numbers of the resulting molecular orbitals. In calculations 
at the Hartree-Fock level, the problem is solved once C has been found, since 
the occupation numbers are fixed. The development that follows applies in 
general whenever an LCAO expansion is introduced, and we make some remarks 
specific to the Hartree-Fock case in Section 5. 

2. Mathematical Aspects of the LCAO Expansion 

Mathematically speaking, the set of occupied molecular orbitals [~b> and the 
set of atomic orhitals IZ> form subspaces of an abstract Hilbert space [3]. Any 
such subspace is conveniently and uniquely represented by a projection operator 
(or projector) P [4] having 

p 2 = p ,  P * = P .  (4) 

Thus one may define a projector PMO on the occupied molecular orbitals; 

?/IMO 

PMo = Y, Ii) ( 8  = Iq~> (~l ,  (5) 
i=, 

((~] being a column matrix of the molecular orbital bras (i], (,Jl .... ), and a pro- 
jector PAO on the atomic orbitals: 

PAO = IZ) S-* <Zl 
m A o  m A o  (6) 

= Y Y 
# = 1  v = l  

The mathematics of subspaces and projectors may now be applied to the situation. 
By the standard projection theorem, each molecular orbital Ii} has a unique 

component in the atomic orbital subspace (and conversely), and this component 
is PAo [i>. If Ii) belongs completely to the atomic orbital suhspace, then 

PAOIi> = Ii5 (7) 

and the LCAO expansion for Ii> is exact. If on the other hand the expansion is 
not exact, then we may employ a "best least-squares theorem" due to L6wdin [5] 
which states that PAoli> is the best least-square approximation to [i> of any 
vector in the atomic orbital subspace. 

In matrix notation, we have either 

PAO [~b> = I~b> (8) 

for exact LCAO expansion of all molecular orbitals, or 

PAo I~b> ~ I~b> (9) 

for the best least-square LCAO approximation to the molecular orbitals. 
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That is, exactly or approximately, 

14) = PAO Ir (10) 
= Iz) S - l ( z l r  

o r  
L4,) = Iz) S - l B .  

Here B is a rectangular matrix (mAO X mMo) whose elements are the overlap 
integrals between atomic orbitals and molecular orbitals: 

B =  (ZI r  and Bui--= ( # l i ) .  (11) 

Equation (10) is an alternative and, we will argue, often more convenient form 
of the LCAO expansion. We see that the usual coefficient matrix C of Eq. (1) is 
reducible to C = S-  1B (12) 

and the standard condition, Eq. (2), may be converted to: 

B * S - 1 B = I .  (13) 

Usually the matrix C is varied until those LCAO MO's are found that give 
the lowest energy. Since the overlap matrix S is known, we see that it is really 
only necessary to vary the matrix B. In varying B, we are actually varying the 
molecular orbitals in the scalar product, Eq. (11). Such a ready interpretation for 
the variation of C is difficult to find. 

The matrix B has an additional advantage in that it (and not C) is analogous 
to the matrix of coefficients C a in the expansion of molecular orbitals in terms 
of some set ]2) of orthogonal atomic orbitals (OAO's). The LCOAO expansion is 

[~b) = [J.) C z (14) 

and C x is now the matrix of OAO-MO overlap integrals: 

C ~= (~1r �9 (15) 

In the past a number of problems have arisen when attempts have been made 
to transfer concepts and quantities formulated in theories where atomic orbitals 
have been assumed orthogonal and overlap neglected (for example, Hfickel, 
Pariser-Parr-Pople, and CNDO methods) to theories where overlap has been 
included (for example, ab initio Hartree-Fock methods). We will show in the next 
sections how some of these problems may be avoided if the results of this section 
are used. 

3. Interpretation of LCAO Calculations 

When orthogonal atomic orbitals have been used or overlap has been neg- 
lected, the interpretation of LCAO calculations has usually been based on the 
"charge-and-bond-order matrix" Qz, first defined by Coulson [6]. In general we 

may write: Q~ = C ~ n (C~) * (16) 

w h e r e ,  is a matrix (usually diagonal) of molecular orbital occupation numbers. 
A similar matrix R may be defined for nonorthogonal orbitals, 

R= CnC* (17) 
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but it is not clear that g plays a corresponding role in interpretation to QX. 
Several authors [7-15] have studied this problem, and the procedure commonly 
used is Mulliken's population analysis [11] which depends upon the matrix 
product RS. 

The reasoning of Section 2 leads to the suggestion that there are two matrices 
which ought to be important in interpretation. The first is a projection matrix P, 
given in general by 

P =  <ZIPMoIZ> �9 (18) 

The diagonal elements of P, given by 

Puu = <kt ]PMo ]#> (19) 

measure the magnitudes of the components of atomic orbitals I#> in the molecular 
orbital subspace, and hence give an indication of the importance of the orbital 
in describing the molecule. LCAO expansion gives 

P = B B *  (20) 

and multiplication of Eq. (13) on the left by B and on 1he right by B t gives a 
condition on P: 

P S - 1 P = P .  (21) 

The second matrix, which on the arguments presented herein properly 
deserves the name "charge-and-bond-order matrix" for nonorthogonal atomic 
orbitals, is the matrix Q, given in general by: 

O=N<xle lZ>  (22) 

where N is the number of electrons in the molecule and ~ is the molecular one- 
electron density operator ([3] and Refs. quoted therein) given by 

e = I~b> ~<4~1, (23) 

being the (diagonal) matrix of molecular orbital probabilities of occupation, 
with N2 = n. 

Q thus contains the expectation values of the atomic orbitals.with respect to 
the molecular one-density Q. LCAO expansion gives 

and also Q = B n B* (24) 

(2  = S R S  . (25) 
The condition on the one-density operator that 

TrQ = 1 (26) 
where "Tr" here means the operator trace of ~ - the sum of elements <i]~1i> with 
respect to some complete orthonormal set { Ii>} - leads by substitution in Eq. (23) 
to the following condition on Q: 

TrQS -1 = TrS -1Q = N.  (27) 

Here we have used the matrix trace, being the sum of the diagonal elements of 
the matrix concerned. 

The argument that Q is a more appropriate quantity than R for interpretation 
rests on the analogy of Q and Q~, each depending in the same way on the 
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respective AO-MO overlap matrices B and C ~, and on a new and general defini- 
tion of occupation number and charge proposed recently [16]. The definition 
depends on the proposition that if P is the projector on some subspace of the 
molecular one-electron Hilbert space and Q is the molecular one-density operator, 
then the occupation number n of that subspace is 

n = N T r o P .  (28) 

The diagonal elements of QX have traditionally been regarded as OAO 
occupation numbers, and this is in accord with the definition, Eq. (28). Thus if 
L2.) is a particular OAO, then its projector is 

p Z = [2.) <,~.l (29) 

of this orbital, and substitution in Eq. (28) yields the occupation number n, 

n ~ O k (30) # = r . .#~ ,u  - 

We find in a similar way that the occupation number n, of an AO [#) is 
given by 

nu = Qu. (31) 

and that atomic occupation numbers hA, nB . . . .  for the various atoms in the 
molecule also depend on Q (assuming that the set of atomic orbitals on each 
atom is orthonormal): 

hA= Z Q . . "  (32) 
/ ~ E A  

Thus Q for AO's may be used in the same way as Qa for the OAO's in 
defining AO occupation numbers and atomic charges, and the analogy between 
them is complete. 

4. Remarks on the Concept of  Bond Order 

A number of quantities have been proposed as a measure of the degree of 
bonding between any two atoms in a molecule [6-17]. The present work suggests 
several new possibilities, each having a special significance. 

The shared electron density occupation number SAB, defined for two atoms A 
and B in the molecule, is one such measure [16]. It is given by 

SAB = nA + nB -- nAB (33) 

where hA, riB, and nab are occupation numbers for atom A, atom B, and the total 
subspace of A and B, respectively, each defined as in Eq. (28). SAB measures the 
amount of electron sharing between the two atoms, and may range from zero 
when there is no sharing to a maximum of nab when all electron density assigned 
to either of the atoms is also shared between them. 

Equation (33) is a general definition, and we may now show the dependence 
of SAB on Q in the LCAO case. The result is: 

SA. ----- Tr(QA + QB -- QABSA A) 
2 Quu Z Z -1 (34) 

= -- Quv(SAB)vu 
g* la v 
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with J#> e A or B, Iv> e A or B. Here QA is the submatrix of Q having elements 
Qu~ with I/z> EA and ]v> cA, QB is a similar submatrix referring to atom B, and 
QAB and SAB are submatrices of Q and S respectively with elements Q.~ and S.~, 
I/~> e A or B, [v) e A or B. 

SAB is thus easily found once the Q matrix is known. 
While it seems that sA~ is the most satisfactory measure of the degree of 

bonding (for reasons advanced in [16]), it is worthwhile investigating the use of 
off-diagonal elements of the P or Q matrix directly, by analogy with Coulson's 
use of the off-diagonal elements of Q~ as "bond orders" in OAO theory. Con- 
sidering P first, we have: 

Pu~ = <#lPuo Iv> (35) 

= ~ IPzo" PMo] V> 

and Pu~ measures the overlap of the components in the molecular orbital subspace 
of atomic orbitals I#> and Iv>. We might expect that the larger the absolute 
magnitude of this quantity the greater is the order of the bond. The absolute 
magnitude of/'.~ is subject to a limit imposed by the Schwarz inequality [4]: 

IP~I < (<kt ]PMo I#> <V IPno IV>) �89 ----< 1. (36) 

Similarly we may consider the off-diagonal elements of Q, giving the magni- 
tudes relative to the molecular density, 

Q~=N<#IQIv>. (37) 

Again we expect that the larger the absolute magnitude of this quantity the 
greater the contribution to bonding, and again there is a limit due to the Schwarz 
inequality: 

IO~l = N [<~t I e �89 ~�89 v>l 
(38) 

__< (Q~  Qw) �89 = (n~ n3 ~ . 

In either case one could use a simple sum, Z Z IP,~I or • ~, IQu~l, as an 
,ueA veB u~A vEB 

index of the total "bond order" between any two atoms. 
Finally our formulation permits a generalization of Wiberg's "bond index" 

[17], which was originally defined within Hartree-Fock theory and the LCOAO 
expansion, and has proven useful in a number of studies [ 17, 18]. The bond index 
for atoms A and B is the sum of the squares of the bond orders, Z ~. (Q~v) 2. 

#eA veB 

Obviously the analogous quantity in the general theory is 

EQ~= E ~g2<#lelv>G'lel~> 
#cA v~B lt~A veB 

= ~ N2<#l~pBel#> (39) 
#cA 

= N 2 TrPA~PnQ. 

This general bond index thus depends on the projectors PA and Pn for the 
two atoms and on the molecular one-density operator. From the theoretical point 
of view, however, there does not seem to be any advantage in using this quantity 
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Table 1. Comparison of indices of bonding in diatomic molecules" 

Molecule Shared density Bond order Bond index 
occuption sum [Eq. (65)] 
number SAB b 

[Eq. (60)~ 

Li 2 1.74 3.93 3.51 
B% t.68 4.19 4.11 
Cz 2.94 6.79 7.58 
N 2 2.71 6.74 6.65 
F 2 0.45 2.34 1.60 
LiH 1.41 2.57 2.89 
BH 1.46 2.63 3.11 
NH 1.12 2.01 2.34 
HF 0.91 2.24 2.30 
CO 2.41 6.35 5.94 
LiF 0.97 4.08 2.82 
BF 1.59 5.10 3.95 

a STO calculations by B. J. RansiI, Rev. mod. Phys. 32, 239 (1960). 
b Values taken from Ref. [19]. 

over the simple sum ~ ~ IQu~I proposed above, provided that absolute values 
p~A v~B 

are used in the sum. 
This prediction is borne out in Table 1, where calculated values for diatomic 

molecules are listed. Note  especially the similarity between actual values of the 
bond order sum and the bond index. These values are two or three times the 
values of saB. There is some difference in the order of the values; for example, F 2 
has the smallest san and bond index but N H  has the smallest bond order sum. 
Broadly speaking, however, the order is the same, rearrangements occurring for 
fluorine-containing molecules (where special reasons prevail [ 16]) or where values 
are close together. For  example all three quantities give lowest values to the 
group F2, H F  and NH,  and highest values to the group CO, N 2, Ce. 

5. Hartree-Fock LCAO Equations 

In the previous sections two general matrices were introduced, namely, the 
projection matrix P and the "charge-and-bond-order  matrix" Q. We now spe- 
cialize to the Har t ree-Fock approximation where all M O  occupation numbers 
nl are constant at unity (assuming molecular spin orbitals) and P and Q therefore 
become identical. 

Previously the problem has been to find the coefficients C by an SCF pro- 
cedure, or alternatively to find R by other minimization techniques. The problem 
now is to find B or Q. 

We make the following points: 
(a) The Fock Hamil tonian operator  F and the Hartree-Fock electronic 

energy E have the same form in terms of Q as they did in terms of R, provided 
that other matrices concerned are transformed using S -1. 
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That is, 

F = H + Tr Q(J' - �89 (40) 
and 

E = �89 Tr Q(H' + F') (41) 
where 

A ' = S - 1 A S  -1 ,  A = J , K , H  or F .  (42) 

Here H and F are the usual core Hamiltonian and total Hamiltonian matrices 
over AO's and the elements of J and K are the Coulomb and exchange repulsion 
operators Jx~ and K ~  over AO's. 

(b) Variation of the energy in its usual form with variation in R leads to the 
results, 

~E = 2 T r F 6 R .  (43) 

An analogous derivation based on Eq. (42) gives 

6E = 2 TrF' ~Q. (44) 

Equation (44) may be used in a similar way to Eq. (43) to derive optimization 
formulae such as the SCF equations of Roothaan [2] and others, McWeeny's 
method of steepest descent [19], or Fletcher's method [20]. Q or B may be found 
directly by McWeeny's or Fletcher's method, but the new formalism offers no 
extra advantages for the direct solution of the SCF equations. One still needs to 
orthogonalize the atomic orbitals, say by symmetric orthogonalization [8], solve 
for C ~ and QX over the OAO's, and back transform: 

B = S � 8 9  ~ (45) 

Q = S ~ Q~S ~ . (46) 

Note that the relation between Q and Qa is the same as the relation between 
any other matrices in the two bases, for example F and F a, H and H ~, etc. 

(c) Rapidity of  convergence of the SCF procedure depends in part on the 
initial guess of R or Q before orthogonalizing and the present work is suggestive 
in this regard. We would expect the superposition of individual atom electron 
densities to be a good starting point. Because of the close relation between pro- 
jectors and density operators in Hartree-Fock theory, superposition of atomic 
densities yields the initial molecular density fro: 

Oo = (1l) S - t  (II)/N (47) 

showing that a good initial choice of R or Q would be: 

Ro=S-1  or Q o = S .  (48) 

6. Conclusions 

There is some value in reformulating the LCAO expansion in terms of the atomic 
orbital-molecular orbital overlap matrix B rather than the matrix of coefficients C. 
This reformulation emphasizes the connection between LCAO theory and the 
mathematics of Hilbert space and projection operators, and enables the intro- 
duction of the projection matrix P and the new "charge-and-bond-order 
matrix" Q. 
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Because it contains the magnitudes of the components of atomic orbitals in 
the occupied molecular orbital subspace, the matrix P measures the importance 
of the various atomic orbitals to the description of the molecular structure. The 
elements of the matrix Q include the expectation values of atomic orbitals relative 
to the molecular one-electron density, and are regarded as atomic orbital occupa- 
tion numbers. It is suggested that P and Q are therefore important for the inter- 
pretation of LCAO calculations. We have also argued that B and Q (rather than 
C and R as traditionally assumed) are analogous to the matrices C z and QZ 
respectively, which have been central to the interpretation of orthogonal atomic 
orbital or overlap-neglected calculations. 

Several new possibilities for measuring the degree of bonding between any 
two atoms have emerged from these considerations. The most promising appears 
to be the shared density occupation number, given by Eq. (34) in its LCAO form. 

The basic equations of the reformulation are the LCAO Eq. (10); the con- 
dition on B, Eq. (13), the general and LCAO definitions of P and Q, Eqs. (18), 
(20), (22), (24) and the conditions on Q, Eq. (27). 
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